Photo of Dr. Jeremy Dodsworth

Dr. Jeremy Dodsworth

Assistant Professor

e-mail: jdodsworth@csusb.edu


B.S. in Bacteriology, Biochemistry and Statistics, University of Wisconsin-Madison
Ph.D. in Microbiology, University of Washington, Seattle
Postdoc in Geomicrobiology and cultivation-independent genomics, University of Nevada, Las Vegas


Courses:

BIOL 220 - Principles of Microbiology


Research Interests:

Microbiology of geothermal springs.

Beautiful and fascinating in their own right, hot springs offer good opportunities to study several frontiers in microbiology. High temperature impacts both microbial community composition and ecosystem function. While microbes that inhabit geothermal environments are typically distinct from those present at lower temperatures, some hot springs, including many in the US Great Basin region, are dominated by microbes that represent entire class- and phylum-level lineages with no cultivated representatives (so-called "microbial dark matter"). Also, some key biogeochemical processes, such as photosynthesis (carbon fixation), transformations in the nitrogen cycle, and lignocellulose degradation, appear to break down or be altered as temperature increases, but the reasons for these changes are not clear. Because thermal environments generally tend to host relatively few taxa in comparison to non-thermal systems, hot springs in the US Great Basin represent good natural laboratories (relatively simple yet tractable systems) to study "microbial dark matter" groups and their possible roles in carbon, nitrogen, and other nutrient cycles. Potential research projects will focus on understanding ecology in geothermal springs and the physiology of novel thermophiles using a combination of field studies, single-cell and community genomics techniques, cultivation efforts, and heterologous expression approaches, involving collaborations with researchers elsewhere in the US and in China.

Genetics and molecular biology of Archaea.

The methanogenic archaeon Methanococcus maripaludis is a genetically tractable model system for understanding the biology of members of the Archaea, the least-well studied of the three domains of life. Potential projects include using genetics and biochemical techniques to understand the roles of the recA (recombinase) homologs radA and radB in recombination and DNA repair in M. maripaludis, as well as the development of novel genetic techniques for this and other methanogens.

Representative Publications:

Dodsworth, J. A., J. Gevorkian, F. Despujos, J. K. Cole, S. K. Murugapiran, H. Ming, W.-J. Li, G. Zhang, A. Dohnalkova, and B. P. Hedlund. 2014. Thermoflexus hugenholtzii gen. nov., sp. nov., a thermophilic, microaerophilic, filamentous bacterium representing a novel class in the Chloroflexi, Thermoflexia classis nov., and description of Thermoflexaceae fam. nov. and Thermoflexales ord. nov. IJSEM 64:2119-27.

Dodsworth, J. A., P. C. Blainey, S. K. Murugapiran, W. D. Swingley, C. A. Ross, S. G. Tringe, P. S. G. Chain, J. Raymond, S. R. Quake and B. P. Hedlund. 2013. Single-cell and metagenomic analyses indicate a fermentative, saccharolytic lifestyle for members of the OP9 lineage. Nature Commun. 4:1854.

Rinke, C., P. Schwientek, A. Sczyrba, N. N. Ivanova, I. J. Anderson, J-F. Cheng, A. Darling, S. Malfatti, B. K. Swan, E. A. Gies, J. A. Dodsworth, B. P. Hedlund, G. Tsiamis, S. M. Sievert, W-T. Liu, J. A. Eisen, S. Hallam, N. C. Kyrpides, R. Stepanauskas, E. M. Rubin, P. Hugenholtz, and T. Woyke. 2013. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499:431-7.

Zhang, C. L., J. Wang, J. A. Dodsworth, A. J. Williams, C. Zhu, K. U. Hinrichs, F. Zheng, and B. P. Hedlund. 2013. In situ production of branched glycerol dialkyl glycerol tetraethers in a great basin hot spring (USA). Front. Microbiol. 4:181.

Schoenfeld, T. W., S. K. Murugapiran, J. A. Dodsworth, S. Floyd, M. Lodes, D. A. Mead, and B. P. Hedlund. 2013. Lateral gene transfer of Family A DNA polymerases between thermophilic viruses, Aquificae, and Apicomplexa. Mol. Biol. Evol. 30:1653-64.

Dodsworth, J. A., A. I. McDonald and B. P. Hedlund. 2012. Calculation of total free energy yield as an alternative approach for predicting the importance of potential chemolithotrophic reactions in geothermal springs. FEMS Microbiol. Ecol. 81:446-54.

Dodsworth, J. A., B. A. Hungate and B. P. Hedlund. 2011. Ammonia oxidation, denitrification and dissimilatory nitrate reduction to ammonium in two US Great Basin hot springs with abundant ammonia-oxidizing archaea. Environ. Microbiol. 13:2371-2386.

Dodsworth, J. A., L. Li, S. Wei, B. P. Hedlund, J. A. Leigh and P. de Figueiredo. 2010. Interdomain conjugal transfer of DNA from bacteria to archaea. Appl. Environ. Microbiol. 76:5644-5647.

Dodsworth, J. A. and J. A. Leigh. 2006. Regulation of nitrogenase by 2-oxoglutarate-reversible, direct binding of a PII-like nitrogen sensor protein to dinitrogenase. Proc. Natl. Acad. Sci. USA 103:9779-9784.

Simon, H. M., J. A. Dodsworth and R. M. Goodman. 2000. Crenarchaeota colonize terrestrial plant roots. Environ. Microbiol. 2:495-505.